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Abstract. We use a Birman-Schwinger type analysis to derive a sufficient condition for 
the existence of bound states in a certain class of N-body systems. This condition is given 
in terms of the underlying subsystem with the threshold energy I = inf r e S s ( H ) .  

1. Introduction 

In 1961 Birman and Schwinger introduced a method to control the number of bound 
states in a two-body system in three dimensions. Based on the fact that the eigenvalues 
of the Schrodinger Hamiltonian h for reasonable potentials t~ with positive coupling 
constant A are continuous and monotonically decreasing functions of A, they noted 
that the number of eigenvalues of h (counting multiplicity) below a fixed negative 
eJlergy - K ’ ,  equals the number of eigenvalues A - ‘ >  1 of the so-called Birman- 
Schwinger kernel ~ v ~ ’ ” ( - A +  ~’)-‘lt11’’~. (We use natural units with h2/2m = 1.) This 
kernel is Hilbert-Schmidt, even in the uniform limit -K’?O.  Hence the number of 
discrete eigenvalues of the two-body Hamiltonian h is determined by the number of 
eigenvalues A-’  > 1 of Iu~’/’( - A ) - ’ ~ u ~ ” *  where the multiplicities of the corresponding 
eigenvalues of h and the Birman-Schwinger kernel are exactly the same. There exist 
rather explicit bounds on that number (see, e.g., Reed and Simon (1978) or Simon 
(1971) for details). 

Klaus and Simon (1980a) extended these arguments to the case of a N-body system 
of v-dimensional particles with unique two-cluster threshold 2 = inf uess( H) < 0, where 
H denotes the N-body Hamiltonian and u e s s ( H )  is the essential spectrum of H. Sigal 
(1983a, b) also generalised the Birman-Schwinger principle to the case of specific 
N-particle systems. 

In this paper we use the above mentioned results for three dimensions to derive a 
sufficient condition for the existence of at least one N-body bound state below the 
threshold Z. This condition is a direct generalisation of the corresponding two-body 
result given by Chadan and Martin (1980) (see also Chadan and De Mol 1980). We 

t Onderzoeksleider NFWO, Belgium. On leave from Instituut voor Theoretische Fysica, Universiteit Leuven, 
B-3030 Leuven, Belgium. 
11 Supported by Fond zur Fordemng der wissenschaftlichen Forschung, Projekt Nr 5588. 

Laboratoire associi au Centre National de la Recherche Scientifique. 

0305-4470/86/ 122337 + 08$02.50 @ 1986 The Institute of Physics 2337 



2338 D Boll4 K Chadan and G Karner 

also mention that sufficient conditions for the existence of bound states of N particles 
with attractive potentials have been derived using the variational principle (Coutinho 
et a1 1984). 

In 0 2 we briefly outline the technical devices to be used. Section 3 derives the 
sufficient condition for the existence of at least one N-body bound state below a unique 
two-cluster threshold, determined by the ground-state energy of a ( N  - 1)-particle 
subsystem, for N 3 3 particles. The restriction to break-up into a ( N  - 1)-particle 
cluster and a ‘free’ particle is just for convenience. Any two-cluster break-up can be 
treated in the same way. Finally in § 4 we briefly discuss the corresponding problem 
for N-body systems ( N 2 3 )  with none of the subsystems having a bound state or 
resonance at zero energy. 

2. BirmanSchwinger kernels 

We consider a N-body system of three-dimensional distinguishable particles described 
by the Hamiltonian H 

H = H o +  v (2.1) 

acting in X =  L2(R3(N-1)) ,  where Ho denotes the free Hamiltonian after the centre-of- 
mass motion has been eliminated and where V is the sum of pairwise potentials uu 

V =  u u ( r i - r j ) .  
i< j  

Throughout the paper the potentials are assumed to satisfy 

vu s 0 (2.3) 

uu E C3W’). (2.4) 

and 

We follow the notation of Reed and Simon (1979). In particular we use clustered 
Jacobi coordinates {tl, . . . , tN-2,  lD}.  We assume that there exists a unique partition 
D of the N particles into a ( N  - 1) cluster and a ‘free’ particle defining in this way a 
two-cluster break-up of the system. Let Xi, (resp LiDj) denote the sum over all 
particles with ( i , j )  in the same (resp different) cluster of D. Then we define 

(2.5) 

HD=Ho+ V D = H - I D .  (2.6) 

For this partition D one may decompose X as X D @ X D =  L2(R3(N-2)  d t D ) @  

L2(W3, 

(2.7) 

where 5~ = ( 5 1 , 5 2 , .  . . , t N - 2 ) .  Then 

HD = h,  @ 1 + 1 @ (-Aio) 

with hD denoting the ( N  - 1)-particle Hamiltonian. The latter determines the equation 

~ D + D = ~ D + D  (2.8) 

where i+hD is the ( N -  1)-particle ground state. We need the notion of a unique 
two-cluster threshold: we call the partition D unique two-cluster if the threshold 
Z = inf uess( H) = ZD < ZD, for all possible partitions D and D’ of the N-particle system. 
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where X D  < O  is a unique two-cluster threshold, XD abbreviates (eD, (0)  and 
GD(XD, Xb; Z D )  denotes the Green function corresponding to HD. We prove the 
following. 

Lemma 3.1. Suppose l [ K D ( X D ) l \  < 1 and Z D  < 0 is a unique two-cluster threshold of 
a (Na3) -body  system. Then [ I  - K ~ ( 2 ~ ) l - l  is positivity preserving and I I ~ I ’ ’ ~ ~ ,  as 
well as 9 defined in (2.11), is positive. 

Proof: We note that Ho= -AxD. Hence exp(-tHo) = exp( tAxD) is positivity improving 
for all t > 0 (see Reed and Simon 1978, ch XIII.12, example 1). Therefore we deduce 
from theorem XIII.45 and the proposition on p 204 of Reed and Simon (1978) that 
( H D - E ) - ’  is positivity preserving for all E < Z D  ( V D  is bounded, see (2.4)). Thus 
KD(  E ) +  is positive or the zero function for all positive + E LZ(R3(N-1)) and for E < Z D .  
The strong convergence of K D ( E )  + K D ( X D )  as E T Z D  (see lemma 2.1) implies that 
also K D ( X D ) $  is positive or the zero function for all positive 4:  K D ( X D  - l / n ) +  + 

K D ( X D ) +  in L2(W3(N-1)) as n +CO determines the existence of a subsequence { [ K D ( Z D  - 
l /n j )~]} jEN such that [ K D ( X D -  l / n j ) 4 ] ( X D )  + [K&D)+](XD) almost everywhere 
as j + m .  

By assumption we have 

such that [ I  - KD(zD)]-’4 is positive for all positive 4 E L ~ ( R ~ ( ~ - ’ ) ) .  Furthermore 
from theorem XIII.46 of Reed and Simon (1978) we infer that lIDl’’2+D is positive 
and uniquely determined. Therefore it follows that 

lID11’2q = [ 1 - KD(ZD”-’~ID~’’~$D (3.3) 

and consequently q is positive. 

Next we consider the sphere S3N-4 with radius IXDl = R, which divides the total space 
in two regions. We define 

and 

(3.4) 

with some positive constant U to be specified in lemma 3.2 below. We denote by 
xM(XD) the characteristic function of the set M. Then we have 

almost everywhere. Therefore K D ( X D ) +  is positive or the zero function (see the proof 
of lemma 3.1). Furthermore, we recall that IIDI’”+D is positive and +D is strictly 
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positive. Using this we obtain from (3.1) 

d X b  GD(XD, Xb; x~)lZD(Xb)l  inf Y ( X b )  

d X b  GD(XD, Xb; ~D)IZD(XL)I IXbl-” 

Y(xD) > l l X , S  R IXdSR 

+ 1 
x inf ( ~ ( x b ) l x b l ” ) .  

(Xb(>R 

IXA>R 

Taking the infima on both sides, we arrive at 

(3.7) 

To proceed further we need the following lemma. 

Lemma 3.2. Define for U = 3 N - 5 the functions F, f and g by 

d X b  GD(XD, Xb; ~D)IZD(XA)I 
F(XD) = I I X d h R  

-k Mz I d X b  GD(XD, x b ;  ~ D ) I Z D ( X ~ ) I  IXbl-’ 

f ( R ) =  inf F(XD) and g ( R )  = inf [IxDl”F(xD)l* 
IXA>R 

IXDl=R IXDI=R 

Then f is decreasing in R and g is increasing in R. 

ProoJ: We define W E  L2(R3(N-1) )  by 

w(xD = I I D  (XD I [ MIX IXDI 6 R ( xD + M 2 x  I XD/> R (XD ) 1 xD 1 -  ” 1 
(3.10) 

and approximate W by a sequence of positive functions W,, E C7(R3(N-1)) such that 
W=lim,,, W,, in L Z ( R 3 ( N - 1 ) ) .  We note that W,,E Ran(HD-ZD) for all n since 
( HD -1,) maps the set of CF functions onto itself ( VD = ZiDj  vu and zly E C,”(R3)). 
Furthermore, Ed(Ho) = 9 ( H D  - X D ) .  (Ed( T) and Ran( T) denote domain and range of 
the operator T.) Therefore we have 

for v = 3 N - 5  

AxDF,, = - H o ( H D - X D ) - ’  W, E L2(R3(N-1) )  

for all n. Thus 
Ax,F, = - W, - X D (  Ho -ED)-’ W,, - 1 VDl(  HD - XD)-’ W,, 

(3.11) 
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From [-xD(H,,-xD)-’]<l in the sense of operators and (3.11) we obtain that 
Ax,Fn C 0, i.e. F,, is a superharmonic function. (A superharmonic function is minus 
a subharmonic function, see Hayman and Kennedy (1976, ch 2).) Then fn defined as 
the infimum of a superharmonic function is also superharmonic (Hayman and Kennedy 
1976, p 41). This implies f, is decreasing in R (Hayman and Kennedy 1976, theorems 
1.12 and 2.8). 

The superharmonicity off. gives (F ,  and therefore f, are in the domain of Ho for 
all n )  

(3.12) 

After multiplication by R and integration from d to infinity, inequality (3.12) becomes 

(3 N - 5)fn ( d )  + if,( k)  2 lim [ ( 3 N  - 5 ) f n  ( R )  + Rfl( R)]. (3 .13)  

Because of the fact that fn is positive, decreasing and f’,, E H2*1(R3(N-1)) we obtain that 
the RHS of inequality (3.13) vanishes for R + 00 (H2,’ is the Sobolev space of order one). 

R - t m  

As a consequence we deduce 

d 
dR 
- ~ ‘ 3 ~ - 5 ) f , (  R )  3 0 (3.14) 

proving that R‘3N-5’f,(R) is increasing in R for all n. 
The boundedness of K D ( Z D )  implies that d X b  GD(XD, Xb; E D )  W ( X b )  exists 

almost everywhere. Therefore it follows by dominated convergence that F,(XD) + 

F(XD) as n -+ M almost everywhere. Hence F and f are decreasing functions and 
R(3N-5)f(R) is an increasing function of R. 

As a consequence of lemma 3.2 the infima in inequalities (3.8) and (3.9) are reached 
at lXDl= R. We set 

(3 .15)  

Then inequalities (3.8) and (3.9) are simply rewritten as 

MI > MIJl + M2J2 (3.17) 

M2 > R” ( MI Jl + M2Jz). 

This implies 
(3.18) 

M1Jl+MJ2> (Jl+ R v J ~ ) ( J l M , + J ~ M 2 ) .  (3.19) 

Therefore a necessary condition for the absence of discrete eigenvalues of H (i.e. 
convergence of the Born series for 9) is expressed by J1 + R”J, < 1 .  

Throughout the exposition we discussed the break-up of the N-body system into 
a ( N  - 1)-body subsystem and a ‘free’ particle. This restriction was assumed for 
convenience only. Since Z = inf cress( H) < 0 is determined by a splitting of the system 
into two clusters (Reed and Simon 1978, p 122), our final result, as stated in theorem 
3.3 below, extends to the most general situation. 



On the existence of N-particle bound states 2343 

Theorem 3.3. Suppose Z = inf a,,,(H) = Z D  < 0 to be a unique two-cluster threshold 
of the N-particle Hamiltonian H ( N  2 3) with potentials obeying (2.3) and (2.4). Then 
a sufficient condition for H to have a discrete eigenvalue is given by 

I i ? f R  ( [IX R ~ X L  GD(xD, XL; x , ) I ~ ~ ( x L ) I )  

d X b  GD(XD, XL; Z D )  I~D(XL)I IxbI-’) > 1 + R ”  IXDI=R inf ( I l X , > R  

for arbitrary R and U = 3 N - 5. 

Replacement of the inequality in theorem 3.3 by an equality means that an eigenvalue 
or resonance of H just appears at threshold out of the continuous spectrum. 

4. N-cluster threshold for (N 3 3)-body systems 

The threshold X = 0 is called N-cluster if none of the subsystems has a bound state 
or resonance at zero energy. There is no equivalent to (2.11) in L2(R3(N-1) )  for the 
N-cluster threshold. Nevertheless the homogeneous equation 

I V11/2Hill Vl’/’(l VI”‘9) = A -‘I VI’’’9 (4.1) 
makes sense and the number of eigenvalues A - ‘  > 1 of this N-cluster Birman-Schwinger 
kernel determines the number of discrete eigenvalues of H (Karner 1985). 

Therefore the following conjecture seems to be justified. A sufficient condition for 
the existence of a bound state in a ( N  3 3)-body system with N-cluster threshold and 
potentials obeying (2.3) and (2.4) is 

inf [ dX’  Go(X, X’; 011 V(X’)l 
IXI=R IX’IrR  

for arbitrary R and v = 3 N - 5 (X = (tl,. . . , tN-,) are the Jacobi coordinates). The 
Green function Go(X, X’; 0) corresponding to Ho is explicitly known (e.g. Jensen 1980). 

(i)  For N = even number of particles ( p  = 3( N - 1)): 

( p  - 3)  ! { [ ( p  - 3)/2]!}-’Ix - X ’ p 2 ) .  (4.3) 

Go(X, X’;O) = 4 - ’ ~ - ~ ’ ~ ( p / 2 - 2 ) ! I X - X ’ ( - ( ~ ~ ~ ) ,  (4.4) 

Go(X, X’; 0) = 2(W-5)/2(2T)-(W-1)/2 

(ii) For N = odd number of particles ( p  = 3( N - 1)): 

Finally we remark that I V(’/2Hi’l is bounded for uij E L p ( R 3 )  n L q ( R 3 )  with q < 3 < p 
(e.g. Sigal 1983b). Hence the condition (4.2) is expected to hold for a large class of 
potentials. 
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